Founded in 1936, Roseburg Forest Products is a privately-owned company. Roseburg manufactures stud lumber, softwood and hardwood plywood, engineered wood including I-joists and laminated veneer lumber. Roseburg is one of North America’s leading producers of particleboard, medium density fiberboard, and thermally fused laminates. The company owns and sustainably manages more than 600,000 acres of timberland in Oregon, North Carolina and Virginia, as well as an export wood chip terminal facility in Coos Bay, Oregon. Roseburg products are shipped throughout North America and the Pacific Rim.
This declaration is an environmental product declaration (EPD) in accordance with ISO 14025. EPDs rely on Life Cycle Assessment (LCA) to provide information on a number of environmental impacts of products over their life cycle. **Exclusions:** EPDs do not indicate that any environmental or social performance benchmarks are met, and there may be impacts that they do not encompass. LCAs do not typically address the site-specific environmental impacts of raw material extraction, nor are they meant to assess human health toxicity. EPDs can complement but cannot replace tools and certifications that are designed to address these impacts and/or set performance thresholds – e.g. Type 1 certifications, health assessments and declarations, environmental impact assessments, etc. **Accuracy of Results:** EPDs regularly rely on estimations of impacts, and the level of accuracy in estimation of effect differs for any particular product line and reported impact. **Comparability:** EPDs are not comparative assertions and are either not comparable or have limited comparability when they cover different life cycle stages, are based on different product category rules or are missing relevant environmental impacts. EPDs from different programs may not be comparable.

PROGRAM OPERATOR
UL Environment

DECLARATION HOLDER
Roseburg Forest Products

DECLARATION NUMBER
4786969381.102.1

DECLARED PRODUCT
Softwood Plywood

REFERENCE PCR

DATE OF ISSUE
June 6, 2018

PERIOD OF VALIDITY
5 Years

CONTENTS OF THE DECLARATION
- Product definition and information about building physics
- Information about basic material and the material’s origin
- Description of the product’s manufacture
- Indication of product processing
- Information about the in-use conditions
- Life cycle assessment results
- Testing results and verifications

The PCR review was conducted by:

PCR Peer Review Panel
Chair: Thomas P. Gloria
Industrial Ecology Consultants

This declaration was independently verified in accordance with ISO 14025 by Underwriters Laboratories

☐ INTERNAL ☒ EXTERNAL

Grant R. Martin, UL Environment

This life cycle assessment was independently verified in accordance with ISO 14044 and the reference PCR by:

Thomas Gloria, Industrial Ecology Consultants

This EPD conforms with ISO 21930:2007 & EN 15804
Foreword

This Type III environmental declaration is developed according to ISO 21930 and 14025 for softwood plywood (SWPW). This EPD reports environmental impacts based on established life cycle impact assessment methods. The reported environmental impacts are estimates, and their level of accuracy may differ for a particular product line and reported impact. LCAs do not generally address site-specific environmental issues related to resource extraction or toxic effects of products on human health. Unreported environmental impacts include (but are not limited to) factors attributable to human health, land use change and habitat destruction. Forest certification systems and government regulations address some of these issues. The product in this EPD conforms to ASTM D9-09ae1. EPDs do not report product environmental performance against any benchmark.

Type III environmental product declarations intended for business-to-consumer communication shall be available to the consumer at the point of purchase (ISO 14025:2006, 9.2.2).

Product System

Product Description

Roseburg's SWPW is manufactured in Dillard, Riddle, and Coquille, Oregon in a variety of dimensions, species, and grades. Some of the veneer is produced in Weed, California. Primary application categories of SWPW include sheathing, underlayment, concrete forming, overlay, siding, sanded, and touch-sanded panels for industrial applications such as furniture and cabinetry. These panels go into a variety of applications based on their properties and desired end use. The 2014 production data used in this EPD considers all SWPW produced during the year and is therefore weighted based on material output. The production data used in this EPD is presented in cubic meters, but includes the following possible dimensions:

- Lengths: 8’, 9’, 10’
- Widths: 4’, 5’
- Thicknesses: 1/4” to 1-1/8”

The primary species used in Roseburg's SWPW is Douglas-fir; other species include radiata pine, and western species like larch and hem fir. Douglas-fir is abundant in the Pacific Northwest, where the majority of Roseburg’s log and veneer supply originate.

Application and Technical Data

In North America, SWPW is applicable in a variety of end uses, including underlayment, sheathing, siding, concrete forming, and industrial applications for residential and non-residential properties.
Production

The upstream forest operations include forest management, logging, planting, and loading the harvested roundwood onto a truck. The roundwood is then transported from the forest road to the mill. The logs are lathed with a rotating drive to the necessary dimensional specifications. Next, the veneer is dried and cross-laminated to form plywood panels that meet or exceed a variety of grades and performance standards. The veneered softwood plywood is sent to the press and cured. Further finishing including trimming, patching, and sanding may occur depending on the final product being manufactured. Finally, the product is packaged for shipping. All of these processes require electricity, fuels, and wood inputs as biomass fuel.

Methodology of the Underlying LCA

Declared Unit

The declared unit is 1 m² of SWPW with a thickness of 3/8 in (9.53 mm). This corresponds to a reference flow of 4.71 oven-dry kilograms. SWPW produced in North America is understood to have some moisture in the product, while the oven-dry unit of measures contains no moisture. The average moisture content of softwood plywood is 5-8% (wet basis). The composition of the softwood plywood is shown in Table 1.

<table>
<thead>
<tr>
<th>Material</th>
<th>Mass (oven-dry basis) [kg]</th>
<th>Mass [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softwood plywood</td>
<td>4.38</td>
<td>92 – 97%</td>
</tr>
<tr>
<td>Phenol formaldehyde resin</td>
<td>0.165</td>
<td>3 – 5%</td>
</tr>
<tr>
<td>Primer</td>
<td>0 - 0.0471</td>
<td>0 - 1%</td>
</tr>
<tr>
<td>Sealer</td>
<td>0 - 0.0236</td>
<td>0 - 0.5%</td>
</tr>
<tr>
<td>Medium density overlay</td>
<td>0 - 0.0471</td>
<td>0 - 1%</td>
</tr>
</tbody>
</table>

No hazardous materials are contained in, or result from the production of, any of the products assessed in this study.
System Boundaries

As shown in Figure 2, the cradle-to-gate system boundary includes the extraction of raw materials and processing; the transportation of raw materials, secondary materials, and any fuels from the extraction site to the manufacturing site; and the manufacturing of the wood construction product, including any necessary packaging. All other life cycle stages are excluded from the analysis, denoted by MND or “module not declared.”

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION PROCESS STAGE</th>
<th>USE STAGE</th>
<th>END OF LIFE STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material supply</td>
<td>Transport</td>
<td>Manufacturing</td>
<td>Transport</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>MND</td>
</tr>
</tbody>
</table>

Figure 2: Life cycle stages of wood products (those included are marked with an ‘x’)

Cut-off Rules

The cut-off criteria for flows to be considered within the system boundary are as follows:

- **Mass** – in case of insufficient data or data gaps, flows less than 1% of the cumulative mass of a unit process may be excluded, provided its environmental relevance is minor;
- **Energy** – in case of insufficient data or data gaps, flows less than 1% of the cumulative energy of a unit process may be excluded, provided its environmental relevance is minor;
- **Environmental relevance** – if a flow meets the above two criteria, but is determined to contribute 2% or more to the selected impact categories of the products underlying the EPD, based on a sensitivity analysis, it is included within the system boundary.
- At least 95% of the total mass and energy flows of all the modules involved in the system boundary of the underlying LCA shall be included and the life cycle impact data shall contain at least 95% of all elementary flows that contribute to each of the declared category indicators.

No cut-off criteria had to be applied for this study.

Background Data

Background data for upstream and downstream data are representative of the years 2010 to 2016 and were obtained from the GaBi 2017 databases (thinkstep, 2017).

Data Quality

All primary data obtained from Roseburg, which covers process inputs and outputs as well as those for any on-site co-generation or boiler processes, are considered to be very good. The most significant background datasets used, those for forestry operations and energy, are considered to be good as they are technologically, geographically, and
temporally relevant. It should be noted that forestry operations data come from the USLCI database and are the best available, though they are more than 10 years old.

Period under Review

This study is intended to represent production for the year 2014.

Region under Review

SWPW production occurs Dillard, Riddle, and Coquille, Oregon. Dried veneer is also produced in Weed, California.

Treatment of Biogenic Carbon

As the system boundary of this study is cradle-to-gate, biogenic carbon emissions were excluded from the global warming potential results, in accordance with the PCR.

Carbon sequestered in the wood product at its end-of-life was not included in the global warming potential calculations as it was outside the system boundary of the study. Estimates of the expected carbon sequestration for average use and end-of-life treatment is provided in the Additional Information section.

Allocation

Multi-output allocation generally follows the requirements of ISO 14044, Section 4.3.4.2. The method of multi-output allocation was determined based on the requirements and guidance of ISO 14044:2006, clause 4.3.4, and additionally considers the following as per the PCR:

"Allocation of multi-output processes should be based on physical properties (e.g., mass or volume) when the main product and co-products generate more or less the same revenues, i.e., when the difference in revenue from a main product and co-products is low. However, if the difference in revenues between the main product and co-products from a multi-output process is more than 10%, allocation shall be based on the revenue and the deviation from the physical allocation shall be substantiated and readily available for critical review of the LCA study. In all cases, material inherent properties such as biogenic carbon, water, and energy content are allocated according to their physical flows, i.e., by mass."

This allocation method applies both to wood waste as an output and as an input (i.e. wood waste used in particleboard manufacturing). The study found that none of the prices of the co-products exceed that of the primary product by more than 10%. Therefore, mass allocation was utilized. This method aligns with industry-average EPDs on the products under study.

Comparability

A comparison or evaluation of EPD data is only possible if all data sets to be compared are 1) created according to EN 15804 and 2) are considered in a whole building context or utilize identical defined use stage scenarios. Comparisons are only allowable when EPDs report cradle-to-grave information using a functional unit. Refer to section 5.3 of EN 15804 for further information.
Life Cycle Assessment Results

The impact categories presented represent impact potentials, i.e., they are approximations of environmental impacts that could occur if the emissions would (a) actually follow the underlying impact pathway and (b) meet certain conditions in the receiving environment while doing so. In addition, the inventory only captures that fraction of the total environmental load that corresponds to the functional unit (relative approach). LCIA results are therefore relative expressions only and do not predict actual impacts, the exceeding of thresholds, safety margins, or risks.

Table 2 depicts the totals for the impact indicators, in addition to energy, resources, and waste results for 1 m² of SWPW with a thickness of 3/8 in (9.53 mm). All environmental impact indicators were assessed using the TRACI 2.1 method. For SWPW, electricity from the grid, inputs to and emissions from co-generation and boiler units (site dependent), and wood and resin raw materials account for the majority of the impacts. The ‘material wood’ category includes both the input of veneer from external or internal sources and the input of roundwood used on site to produce veneer.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Unit (per m², 3/8” thick)</th>
<th>A1-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact categories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global Warming Potential (excluding biogenic carbon)</td>
<td>kg CO₂ equiv</td>
<td>1.50</td>
</tr>
<tr>
<td>Acidification Potential</td>
<td>kg SO₂ equiv</td>
<td>0.00839</td>
</tr>
<tr>
<td>Eutrophication Potential</td>
<td>kg N equiv</td>
<td>7.63E-04</td>
</tr>
<tr>
<td>Smog Formation Potential</td>
<td>kg O₃ equiv</td>
<td>0.217</td>
</tr>
<tr>
<td>Ozone Depletion Potential</td>
<td>kg CFC-11 equiv</td>
<td>8.51E-11</td>
</tr>
<tr>
<td>Primary energy consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total primary energy consumption</td>
<td>MJ</td>
<td>59.6</td>
</tr>
<tr>
<td>Non-renewable fossil</td>
<td>MJ</td>
<td>29.0</td>
</tr>
<tr>
<td>Non-renewable nuclear</td>
<td>MJ</td>
<td>0.886</td>
</tr>
<tr>
<td>Renewable (solar, wind, hydroelectric and geothermal)</td>
<td>MJ</td>
<td>4.76</td>
</tr>
<tr>
<td>Renewable (biomass)</td>
<td>MJ</td>
<td>24.9</td>
</tr>
<tr>
<td>Material resources consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-renewable materials</td>
<td>kg</td>
<td>1.01</td>
</tr>
<tr>
<td>Renewable materials</td>
<td>kg</td>
<td>3000</td>
</tr>
<tr>
<td>Fresh water</td>
<td>L</td>
<td>23.7</td>
</tr>
<tr>
<td>Waste materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous waste</td>
<td>kg</td>
<td>7.03E-08</td>
</tr>
<tr>
<td>Non-hazardous waste</td>
<td>kg</td>
<td>0.0726</td>
</tr>
</tbody>
</table>
Additional Environmental Information

Carbon Sequestration

Per the PCR, the carbon stored in the product after final disposal was estimated using the B2B FPInnovations PCR Carbon Sequestration Calculator (2.18). Table 3 details the carbon dioxide that is sequestered in the product at the gate of the manufacturing stage, the total carbon dioxide and methane emissions associated with the estimated end-of-life scenario provided by the calculator, and finally, the net sequestration of greenhouse gas emissions that could potentially be associated with the product. Were a cradle-to-grave system boundary used instead, this credit could be accounted for in the total GWP of the products.

Table 3: Carbon storage of softwood plywood product

<table>
<thead>
<tr>
<th>Metric</th>
<th>Wood content</th>
<th>Wood mass</th>
<th>Carbon sequestered in product at gate</th>
<th>Emissions from estimated EoL treatment</th>
<th>Sequestration, net of greenhouse gas emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit</td>
<td>kg</td>
<td>kg CO₂-eq.</td>
<td>kg CO₂</td>
<td>kg CH₄</td>
</tr>
<tr>
<td>Softwood plywood</td>
<td>93%</td>
<td>4.38</td>
<td>-8.03</td>
<td>2.55</td>
<td>0.04</td>
</tr>
</tbody>
</table>
References

LCA Development

thinkstep

The EPD and LCA were prepared by thinkstep, Inc.

Contact Information

thinkstep, Inc.
170 Milk Street, 3rd Floor, Boston, MA 02109

info@thinkstep.com; www.thinkstep.com

Roseburg

3660 Gateway Street
Springfield, OR 97477
800-245-1115

info@roseburg.com; www.roseburg.com